Korzystając z doświadczeń z akceleratorami ciągłych strumieni plazmy, zespół naukowców i inżynierów z Instytutu Fizyki Plazmy i Laserowej Mikrosyntezy w Warszawie zbudował silnik typu Halla zoptymalizowany do pracy ze znacznie tańszym gazem szlachetnym: kryptonem.
Elektryczne napędy plazmowe typu Halla to przyszłość astronautyki. Już dziś są poważną konkurencją dla klasycznych silników rakietowych, zwłaszcza jako napędy manewrowe do zmian orientacji satelitów i ich orbit oraz jako marszowe w sondach dalekiego zasięgu. Silniki te mają jednak istotną wadę: gazem roboczym jest w nich trudno dostępny i drogi ksenon. Korzystając z doświadczeń z akceleratorami ciągłych strumieni plazmy, zespół naukowców i inżynierów z Instytutu Fizyki Plazmy i Laserowej Mikrosyntezy w Warszawie zbudował silnik typu Halla zoptymalizowany do pracy ze znacznie tańszym gazem szlachetnym: kryptonem.
Rakietowe silniki chemiczne są niezastąpione przy wynoszeniu ładunków w kosmos. Mają wielką siłę ciągu, lecz wykorzystują wyłącznie energię zgromadzoną w paliwie i działają zaledwie kilkadziesiąt sekund. W przestrzeni kosmicznej, gdzie opory ruchu są zaniedbywalnie małe, użyteczne stają się inne silniki, o znacznie mniejszym ciągu, za to działające dłużej – miesiącami lub nawet latami. Do urządzeń tego typu należą napędy plazmowe, w których gazem roboczym zazwyczaj jest ksenon. W Instytucie Fizyki Plazmy i Laserowej Mikrosyntezy (IFPiLM) w Warszawie powstał napęd plazmowy typu Halla zaprojektowany do pracy z kryptonem, gazem szlachetnym nawet dziesięciokrotnie tańszym od ksenonu.
Silniki plazmowe typu Halla to jedna z odmian elektrycznych napędów kosmicznych. Stosowane od lat 70 ubiegłego wieku w bezzałogowych lotach kosmicznych, umożliwiają prowadzanie precyzyjnych manewrów i korekt orbit satelitów. Ostatnio coraz częściej montuje się je jako napędy marszowe w sondach kosmicznych dalekiego zasięgu.
Do przekształcenia gazu roboczego w plazmę i wytworzenia siły ciągu, silniki typu Halla wykorzystują zewnętrzne źródło zasilania, np. baterie słoneczne. Cząsteczki plazmy (jony i elektrony) są obdarzone ładunkiem elektrycznym, mogą więc być przyspieszane w polu elektrostatycznym do dużych prędkości, sięgających w silnikach Halla od 15 do 30 km/s i więcej (prędkość gazów odrzutowych w silnikach chemicznych nie przekracza 4 km/s). Silnik plazmowy wytwarza słaby ciąg (od kilku do 1000 miliniutonów, w zależności od mocy), ale może działać długo i zmienić prędkość sondy nawet o kilka kilometrów na sekundę.
„Generatory strumieni plazmy są jednym z kierunków badawczych od lat rozwijanych w Instytucie Fizyki Plazmy i Laserowej Mikrosyntezy. Korzystając ze zgromadzonych doświadczeń, w maju 2008 roku nasz zespół przystąpił do budowy silnika plazmowego typu Halla z kryptonem jako gazem roboczym”, mówi odpowiedzialny za projekt dr Jacek Kurzyna z IFPiLM.
Obecnie gazem roboczym używanym w silnikach plazmowych typu Halla jest ksenon, pierwiastek drogi i trudno dostępny. Pozyskanie kryptonu, innego gazu szlachetnego, jest nawet do dziesięciu razy tańsze. Co prawda wytwarzanie jonów kryptonu wymaga nieco większych energii niż w przypadku ksenonu, są one jednak lżejsze od ksenonowych i można je przyspieszać do tej samej prędkości za pomocą niższego napięcia. „Nasz silnik był od początku rozwijany i optymalizowany do pracy z kryptonem. Musieliśmy odpowiednio zaprojektować konfigurację pola magnetycznego i odpowiadający jej obwód magnetyczny. Część elementów trzeba było wykonać w taki sposób, aby wytrzymały zwiększone obciążenia cieplne”, wyjaśnia doktorant Dariusz Daniłko z IFPiLM.
Nowy silnik jest napędem średniej wielkości, przeznaczonym do pracy ciągłej. Ważące niecałe pięć kilogramów urządzenie ma moc ok. pół kilowata. „Sonda SMART-1, którą Europejska Agencja Kosmiczna (ESA) wysłała ku Księżycowi, dysponowała silnikiem ksenonowym o mocy poniżej 2 kW. Przyspieszył on sondę o 3,6 km/s. Zatem w małych próbnikach kosmicznych również nasz napęd mógłby pełnić rolę silnika marszowego”, mówi dr Serge Barral z IFPiLM.
Zbudowany egzemplarz silnika typu Halla to prototypowe urządzenie, obecnie przygotowywane do testów w warunkach próżniowych. „Jeśli testy wypadną pomyślnie, czeka nas jeszcze optymalizacja silnika i cała seria badań kwalifikacyjnych. Zgłoszenie projektu do ESA w ramach II konkursu PECS, czyli Porozumienia o Europejskim Państwie Współpracującym, zawartego między Polską a ESA, zaowocowało pozytywną oceną. W przypadku realizacji projektu pozwoli to rozpocząć procedurę kwalifikacyjną”, wyjaśnia dr Kurzyna.
Wyniki badań nad kryptonowym silnikiem plazmowym znajdą zastosowanie także poza astronautyką. Akceleratory ciągłych strumieni plazmy są bowiem chętnie wykorzystywane w wielu procesach technologicznych, m.in. do czyszczenia powierzchni materiałów, jej uszlachetniania oraz nakładania cienkich warstw, np. węglowych o wytrzymałości diamentu. Zespół naukowców z IFPiLM opracował m.in. koncepcję nakładania cienkich warstw tlenkowych do zastosowań w ogniwach fotowoltaicznych.
Projekt i budowa elektrycznego silnika plazmowego typu Halla zostały w całości sfinansowane przez Instytut Fizyki Plazmy i Laserowej Mikrosyntezy.
Instytut Fizyki Plazmy i Laserowej Mikrosyntezy (IFPiLM) w Warszawie istnieje od 1976 roku. Prowadzi badania podstawowe i prace aplikacyjne w zakresie fuzji jądrowej, fizyki plazmy wytwarzanej laserami impulsowymi i w układach z magnetycznym utrzymaniem plazmy, a także impulsowych technologii wielkich mocy. Większość prac badawczych i technologicznych jest realizowana w ramach współpracy międzynarodowej objętej projektami i programami europejskimi, w tym fuzyjnymi programami Wspólnoty Euratom i konsorcjum HiPER. IFPiLM koordynuje prace trzynastu polskich ośrodków w zakresie fuzji jądrowej w ramach programu Asocjacji Euratom-IFPiLM. Program badań Instytutu jest nadzorowany i dofinansowywany przez Ministerstwo Nauki i Szkolnictwa Wyższego.
Serdecznie dziękujemy IFPiLM za przesłaną informację.