GEM upraszcza wewnętrzną budowę protonów oraz przebieg zderzeń z ich udziałem

0

We wnętrzu każdego protonu bądź neutronu znajdują się trzy kwarki związane gluonami. Dotychczas często zakładano, że dwa z nich tworzą trwałą parę: dikwark.  Teraz wydaje się jednak, że żywot dikwarków w fizyce dobiega końca. To jeden  z wniosków płynących z nowego modelu zderzeń protonów z protonami  bądź jądrami atomowymi, w którym uwzględniono oddziaływania gluonów  z morzem wirtualnych kwarków i antykwarków.

W fizyce pojawienie się nowego modelu teoretycznego nierzadko oznacza kłopoty dla starych koncepcji. Nie inaczej jest w przypadku opisu zderzeń protonów z protonami bądź jądrami atomowymi, zaproponowanego przez naukowców z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie. W najnowszym modelu niebagatelną rolę odgrywają interakcje gluonów emitowanych przez jeden proton z morzem wirtualnych kwarków i antykwarków, pojawiających się i znikających wewnątrz drugiego protonu bądź neutronu. 

Gluony są nośnikami oddziaływania silnego, jednego z czterech fundamentalnych oddziaływań przyrody. Wiąże ono kwarki w zlepki, na przykład w protony i neutrony. Pod wieloma względami oddziaływanie silne różni się od pozostałych. Na przykład nie słabnie ono, lecz rośnie wraz z odległością między cząstkami. Co więcej, w przeciwieństwie do fotonów gluony przenoszą pewien ładunek (malowniczo nazywany kolorem) i mogą oddziaływać między sobą. 

Dominująca część reakcji jądrowych – w tym większość zderzeń protonów z protonami bądź jądra mi atomowymi – to procesy, w których cząstki jedynie się „muskają” wymieniając gluony. Zderzenia tego typu są nazywane przez fizyków miękkimi i sprawiają im niemały kłopot, gdyż opisująca je teoria nie jest policzalna z zasad pierwszych. Z konieczności wszystkie dzisiejsze modele proce sów miękkich są więc mniej lub bardziej fenomenologiczne.  

„Sami początkowo chcieliśmy tylko sprawdzić, jak dotychczasowe narzędzie, znane jako Dualny Model Partonów, radzi sobie z bardziej precyzyjnymi danymi eksperymentalnymi dotyczącymi zde rzeń protonu z protonem oraz protonu z jądrem węgla”, wspomina prof. dr hab. Marek Jeżabek (IFJ PAN). „Błyskawicznie się okazało, że nie idzie mu najlepiej. Postanowiliśmy więc na bazie sta rego modelu, rozwijanego od ponad czterech dekad, spróbować stworzyć coś z jednej strony do kładniejszego, z drugiej bliższego naturze opisywanych zjawisk”. 

Zbudowany w IFJ PAN Model Wymiany Gluonów (Gluon Exchange Model, GEM) także ma charakter fenomenologiczny. Bazuje jednak nie na analogiach do innych zjawisk fizycznych, lecz opiera się bezpośrednio na istnieniu kwarków i gluonów oraz na ich fundamentalnych własnościach. Co więcej, GEM bierze pod uwagę istnienie w protonach i neutronach nie tylko trójek kwarków głównych (walencyjnych), ale także morza ciągle powstających i anihilujących par wirtualnych kwarków i antykwarków. Ponadto uwzględniono w nim ograniczenia wynikające z zasady zachowania liczby barionowej. W uproszczeniu mówi ona, że liczba barionów (czyli m.in. protonów i neutronów) istniejących przed i po zakończeniu oddziaływania musi pozostać niezmieniona. Ponieważ każdy z kwarków przenosi liczbę barionową (równą 1/3), zasada ta pozwala lepiej wnioskować, co się dzieje z kwarkami i wymienianymi między nimi gluonami. 

„GEM pozwolił nam zbadać nowe scenariusze przebiegu zdarzeń z udziałem protonów i neutro nów”, podkreśla dr hab. Andrzej Rybicki (IFJ PAN) i przechodzi do szczegółów: „Wyobraźmy sobie na przykład, że w trakcie miękkiego zderzenia proton-proton jeden z nich emituje gluon, który trafia w drugi, lecz nie w jego kwark walencyjny, a w jakiś przez ułamek chwili istniejący kwark z wirtual nego morza. Gdy taki gluon zostanie zaabsorbowany, tworzące parę kwark morski i antykwark morski przestają być wirtualne i się materializują w inne cząstki w pewnych stanach końcowych. Zwróćmy uwagę, że w tym scenariuszu nowe cząstki powstają mimo faktu, że kwarki walencyjne jednego z protonów pozostały nietknięte”.  

Krakowski model gluonowy prowadzi do ciekawych spostrzeżeń, z których dwa są szczególnie godne uwagi. Pierwsze dotyczy pochodzenia protonów dyfrakcyjnych, obserwowanych w zderzeniach protonów. Są to szybkie protony, które wybiegają z miejsca kolizji pod niewielkimi kątami. Dotychczas sądzono, że nie mogą się one produkować w procesach związanych z wymianą koloru i że za ich powstawanie odpowiada inny mechanizm fizyczny. Teraz się okazuje, że obecność pro tonów dyfrakcyjnych można doskonale wytłumaczyć właśnie oddziaływaniem gluonu wyemitowanego przez jeden proton z kwarkami morskimi drugiego protonu. 

Gdy proton zderza się z innym protonem, gluon wyemitowany przez kwark walencyjny jednego protonu może wejść w interakcję z kwarkiem wirtualnej pary z morza wewnątrz drugiego protonu. Zgodnie z modelem GEM, rezultatem takiego oddziaływania będzie szybki proton o nienaruszonej strukturze kwarków walencyjnych oraz inne cząstki, utworzone w procesach zachodzących w obszarze oddziaływania umownie zaznaczonym na biało. (Źródło: IFJ PAN)

Nie mniej ciekawe jest kolejne spostrzeżenie. Wcześniej przy opisie zderzeń miękkich przyjmowano, że dwa spośród trzech kwarków walencyjnych protonu czy neutronu są ze sobą związane tak trwale, że tworzą „molekułę” nazywaną dikwarkiem. Istnienie dikwarku było hipotezą, za którą nie wszyscy fizycy oddaliby bezkrytycznie głowę, niemniej koncept był szeroko stosowany – co teraz zapewne się zmieni. Model GEM skonfrontowano bowiem z danymi eksperymentalnymi opisujący mi sytuację, w której proton zderza się z jądrem węgla oddziałując po drodze z dwoma lub więcej protonami/neutronami. Okazało się, że aby pozostać w zgodzie z pomiarami, w ramach nowego modelu w przynajmniej połowie przypadków trzeba założyć dezintegrację dikwarku.  

Jeden z wariantów zderzenia protonu z dwoma protonami/neutronami w jądrze węgla według modelu GEM. Dwa kwarki walencyjne jednego protonu wymieniają gluony z kwarkami walencyjnymi w dwóch protonach/neutronach jądra węgla. Trójka kwarków nadlatującego protonu przestaje być kolorowo obojętna. Kwarki te, widoczne po prawej na czerwono, muszą następnie wyłapać cząstki z obszaru oddziaływania (zaznaczonego na biało), co skutkuje produkcją cząstek wtórnych. (Źródło: IFJ PAN)

„Wiele zatem wskazuje, że dikwark w protonie czy neutronie nie jest obiektem mocno związanym. W szczególności może być tak, że dikwark istnieje tylko efektywnie, jako przypadkowa konfiguracja dwóch kwarków tworzących tak zwany kolorowy antytryplet – i gdy tylko może, natychmiast się rozlatuje”, mówi dr Rybicki. 

Krakowski model wymiany gluonów – „nasz klejnot”, jak mówią z przymrużeniem oka obaj autorzy wykorzystując grę słów w języku angielskim (wyraz „gem” można bowiem tłumaczyć jako „klejnot” bądź „cacko”) – w prostszy i bardziej spójny sposób wyjaśnia szerszą klasę zjawisk niż dotychczasowe narzędzia opisu zderzeń miękkich. Obecne wyniki, zaprezentowane w artykule opublikowanym na łamach czasopisma „Physics Letters B”, mają ciekawe implikacje dla zjawisk anihilacji materii z antymaterią, w których mogłoby dochodzić do anihilacji antyprotonu na więcej niż jednym protonie/neutronie w jądrze atomowym. Dlatego autorzy przedstawili już pierwsze, wstępne propozycje dotyczące przeprowadzenia nowych pomiarów w CERN z użyciem wiązki antyprotonów. 

Informacje prasowe: IFJ PAN

Comments are closed.